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ABSTRACT

Adiabatic invariance, in which certain quantities of a system remain unchanged as

a parameter of the system is infinitely slowly altered, plays a fundamental role in many

areas of physics. For any harmonic oscillator, the adiabatic invariant is the energy divided

by the frequency. When the alterations are slow but occur over a finite time, there is

predicted to be an exponential suppression of the change in adiabtic invariant; that is, ife

is a dimensionless positive number that tends to zero in the limit of infinitely slow

alterations, then the change in adiabatic invariant is proportional to exp(-1/e). We report

numerical simulations of three oscillators whose parameters are varied at rates ranging

from very slow to very fast compared to the oscillation frequency. The models are single-

degree-of-freedom oscillators that are based on simple physical systems. The exponential

suppression is not observed, which indicates that its observation may be extremely difficult

or impossible. Furthermore, the change in adiabatic invariant is found to depend upon the

initial phase even in the limit of infinitely slow changes. In the case of abrupt alterations,

the numerical simulations verify some theoretical calculations, but reveal that other

theoretical calculations are incorrect.
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I. INTRODUCTION

Conserved quantities (constants of the motion) of a system are important both

fundamentally and practically. In any closed system, for example, the total energy is

constant. In open systems, no conserved quantities exist in general. However, for cases

in which an external agent slowly alters a parameter of a system, approximate constants do

exist. These are referred to as adiabatic invariants, and are exactly conserved in the limit

of infinitely slow alterations.

Adiabatic invariance plays a fundamental role in much of physics. For example,

the entropy of a closed thermodynamic system remains constant as the system is subjected

to slow mechanical changes. The underlying quantum statistical description of this

process is that the occupation numbers corresponding to the energy eigenstates are

constant during such changes. In fact, the "old" quantum theory was based upon the

axiom of quantifyring the classical adiabatic invariants of the motion. Many practical

techniques, including geometric ray theory in underwater acoustics and the bending of

microwave radiation in waveguides, owe both their utility and limitations to adiabatic

invariance. The breakdown of adiabatic invariance in the latter example is the loss of

energy of the primary mode as a result of the excitation of other propagating modes,

including those in the backward direction. Because microwaveguides typically operate in

frequency ranges such that there is only one type of mode propagating, the new excitation

is limited to the backward-propagating mode. Adiabatic invariance has also been

employed in a variety of simple systems (Kubo, 1967; Crawford, 1990; Denardo and

Alkov, 1993).

When external changes are infinitely smooth but not infinitely slow, a weak



breakdown of adiabatic invariance is predicted. The change in the adiabatic invariant of

the initially excited state, and the excitation of other states, are exponentially suppressed.

By this is meant that, if& is a dimensionless positive number which tends to zero in the

limit of infinitely slow external changes, then the changes in the adiabatic invariants of the

system are proportional to exp(-1/s) (Landau and Lifshitz, 1976; Corben and Stehle,

1960). This effect has recently been considered in quantum systems (Kvitsinsky and

Putterman, 1990). For changes that are not infinitely smooth, the suppression is predicted

to be algebraic rather than exponential; the changes are proportional to en, where n is the

order of the derivative that is discontinuous (Lenard, 1959). Because no external changes

in real or computational systems can be infinitely smooth, observation of the exponential

suppression is not expected. The nature of the breakdown may thus serve as a probe of

the smoothness of the external changes. To our knowledge, the breakdown of adiabatic

invariance has not been quantified experimentally or numerically.

In this thesis, we employ numerical simulations to examine the breakdown of

adiabatic invariance in simple oscillators with one degree of freedom. Three such model

systems are investigated: a longitudinal mass-and-spring oscillator confined to a tube that

is rotated 3600 about a perpendicular bisector of the tube, the same system but translated

one unit distance along the axis of the tube, and a transverse mass-and-spring oscillator

where the walls connected to the springs are both moved either outward or inward. We

refer to the first as the Rotate system, the second as the Translate system, and the third as

the Dilate system.

In Ch. II, we describe out three model systems and theoretically consider adiabatic

invariance and its breakdown. The adiabatic invariance of one of the systems is explicitly

derived. We also derive the final states of the systems in the limit of abrupt alterations;

i.e., when the alterations occur over a time that is much smaller than the characteristic

2



period of the oscillations. In Ch. III, we describe our numerical method and present

results for the three systems. Comparison with theory is made in both the near-adiabatic

(slow but not infinitely slow) regime and the abrupt regime. In Ch. IV, we present

conclusions and describe a substantial amount of future work. The three appendices

consist of the C-language computer programs that we created and used.

3



El I illI I iI * IU !

I. THEORY

A. MODEL SYSTEMS

In this section, we derive the equations of motion of the three systems that are

considered in this thesis. As explained below, the systems are referred to as Rotate,

Translate, and Dilate.

The first system consists of a mass-and-spring oscillator enclosed in a frictionless

tube such that there is only one degree of freedom of the mass (Fig. II.A. 1). An external

agent rotates the tube about a perpendicular axis through the center, which is the

equilibrium point of the mass. In the rotating frame of reference of the tube, the equation

of the motion of the mass is

5E +[oo -00 (t)]x = 0, (11.A.l)

where x is the displacement from the center, Coo is the frequency of the oscillator in the

absence of rotation, ard f)(t) is the instantaneous argular velocity of the tube.

To derive (II.A. 1) we first note that, in the rotating frame of the reference of the

tube, four forces act on the mass: the spring force, the centrifugal force, the Coriolis

force, and the force of the tube. The force exerted by the springs is

Fv.= -kx =-mcox, (II.A.2)

where k is the spring constant and m is the mass. This is a restoring force, which always

opposes the displacement. On the other hand, the centrifugal force is an antirestoring

force and is given in general by

4



which, in o ur case, reduces to

F. = -mfl 2 x, (II.A.3)

The Coriolis force is, in general,

where V is the velocity of the mass in the rotating frame. This force acts transverse to the

motion relative to the rotating frame and, in our case, reduces to

Fc = - 2mftv. (II.A.4)

The force Ftub of the tube is also purely transverse due to the assumed absence of

friction. Ftbe is a reactive force whose instantaneous value is such that the net transverse

force accounts for the transverse acceleration Ox of the mass. Hence, in the transverse

direction,

Ft,. + Fco,011 = mfl-x, (II.A.5)

where Fcoriojis is given by (ll.A.4). The transverse equation of motion (II.A.5) is

irrelevant for our purposes. The equation of notion for the displacement x is found by

setting the sum of the spring and centrifugal forces in (II.A.2) and (II.A.3), respectively,

equal to the mass m multiplied by the acceleration i3. The result is the equation of motion

(IhA. 1).

Regarding the angular velocity fl(t) of the tube, we desire this function be

identically zero for t < -T and for t > T (where T is a time value of our choice) and to vary

5



over the time inter'.',' I-T,T] such that the tube is rotated one revolution (3600). We also

desire that 0qkt) oe as smooth as feasible. A natural choice is thusI0, t < -
n(t)= . sech( , -T :5t!5 T . (II.A.6)

0, t > TJ

In this expression, f2o is the peak angular velocity which occurs at t = 0. The near-

adiabatic limit corresponds to small values of Qo; the abrupt lii 't corresponds to large

values. We choose T to be sufficiently large such that the discontinuity in Q'(t) at Itl = T is

sufficiently small and thus has a negligible effect upon the motion. Furthermore, the

normalization of the sech argument in (II.A.6) is chosen to yield (as closely as possible) a

single revolution if T is large:

iflosech( )dt = 21t.

Our first model system is governed by (II.A. 1) and (II.A.6). This system, as well as the

computer progi am that simulates the motion, is referred to as Rotate.

Our second system is identical to the first except that the alteration is a translation

along the axis of the tube rather than a rotation about a perpendicular bisecting axis (Fig.

It.A.2). The equation of motion is given by

+02o = -"¢t) (II.A.7)

where V(t) is the instantaneous velocity of the tube along its axis.

To derive (II. A. 7) we note that, in the frame of reference of the tube,

6



an inertial force exists in addition to the spring force. By Einstein's Equivalence Principle,

the inertial force has magnitude equal to the mass multiplied by the acceleration of the

frame (relative to an inertial frame), and is directed opposite to this acceleration. This

leads immediately to the equation of motion (II.A.7).

As with the angular velocity in (II.A.6), we choose the linear velocity in the second

model to be

0O, t < -T

V(t)= Vo sech( , -T _< t< } (II.A.8)

t t T

where the quantity Vo is the peak value of th• velocity of the tube. We again choose T

sufficiently large to ensure that the discontinuity of V(t) at It I = T is negligible. We have

chosen the argument of sech in (II.A.8) such that the total displacement of the tube is

unity:

fVosech(-Y.)dt = 1.

Our second model system is governed by (II.A.7) and (II.A.8). We refer to this system

and computer program as Translate.

Our third equation of motion is a standard one in considerations of adiabatic

invariance:

R +(0tx =70, (II.A9)
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where tne frequency (o, which is a function of time, has an initial value co 0 that is constant

for t < -T, a final value o t that is constant for t > T, and varies at intermediate times. We

choose

(0 2, t < -T}

) ( (2 2 _02
) + , 0 tanh(at), -T <_ t < T (II. A. 10)

22
CDJ• t > T

The near-adiabatic limit corresponds to small values of cc compared to co and (01; the

abrupt limit corresponds to large values.

A physical realization of (IIA.9) is shown in Fig. II.A.3. The mass moves parallel

to the walls. If the amplitude of the motion remains small, and if the springs always have

a nonzero tension, then equal movement of the walls either inward or outward can give

rise to the equation of motion (II. A. 9). Due to this physical realization, we refer to the

system and the computer program as Dilate.

8



49
Fig. II.A. 1. Rotate system. The tube enclosing the mass-and-spring system rotates with

angular velocity f0(t). The spring constant of the system is k.
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Fig. II.A.2. Translate system. The tube enclosing the mass-and-spring system is

translated with instantaneous velocity V(t) along its axis. The spring constant of the

system is k.
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Fig. II.A.3. Dilate system. The motion of the mass is transverse to the springs. The walls

are both moved either outward or inward.
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B. NEAR-ADIABATIC LIMIT

Before we consider the weak breakdown of adiabatic invariance, we examine the

adiabatic invariance which occurs in the limit of infinitely slow alterations of a parameter

of a system. Under these conditions, it can be shown for any periodic Hamiltonian system

that the actions Ji are invariant:

Ji = pi dqi, (II.B. 1)

where pi and qi are the conjugate momentum and position variables of the ith degree of

freedom, and where the integral is over one cycle of the motion. If the motion is simple

harmonic, (IL.B 1) reduces to J = E/co, where E is the energy of the oscillator and o is the

angular frequency. In general, then, for infinitely slow variations of a parameter of a

harmonic oscillator,

E = constant, (II.B.2)

This result can be derived explicitly for a variety of oscillators. The most widely known

case is a small-amplitude pendulum whose length is slowly altered (Kubo, 1967). We now

explicitly derive (II.B.2) for the case of our Dilate system (Sec. MI.A). To our knowledge,

this derivation is not in the literature.

The geometry of the system is shown in Fig. I.B. 1. It is not difficult to show that

the equation of motion for the position x is

mR + 2k. L- L- x = 0, (II.B.3)
L

12



which is valid in the limit of small oscillations. We will be concerned only with the case L

> Lo (i.e., the springs are always stretched). From (II.B.3) we find that the frequency is

given by

CD 2 = 2k. L - L. (II.B.4)
m L

We now imagine that both walls in Fig. II.B. 1 are slowly moved a small distance either

outward or inward, so that the new distance between the wall is L + 6L. The frequency

will change according to (II.B.4). How does the amplitude (or energy) change? We can

calculate this change by employing the conservation of energy. The work done by the

external agent that moves the walls is

8W = 2f5L, (II.B.5)

where the normal force exerted by a spring on a wall is

f = < Tcos0 >, (II.B.6)

where T is the tension and 0 is the angle of the opening from the perpendicular. We have

included a time average in (II.B.6) due to the assumption that the displacement of the

walls is slow compared to the period of the oscillations. The tension T and angle 0 are

given by

T = ko(J2 +x2 -gL.),

cos0 L
.FI- + X2

Substituting these into (II.B.6), and approximating to the lowest order in x/L, gives

13



k >.
2V]

The total energy of the system is

E = ko(L-L) 2 +E, (II.B.8)

where the first term on the right is the rest gner. and the second term is the oscillation

energy. The latter is given by

E-= mi 2 +ImcO2x 2 , (II.B.9)
2 2

The work done by the external agent equals the change in energy of the system:

8W = 8E•,, I(lIB. 10)

Substituting (II.B.7) into (II.B.5), and then substituting the resultant expression and

(ll.B.8) into (UI.B. 10), gives

8E = koL__• < x' >8L. (liIB. 11)
L2

From (II.B.9) and the fact that the average kinetic and potential energies are equal, we

find

E= mcD <x 2 >,

Substituting this into (II.B. 11), and rearranging, gives

SE = mkLo 8L (II.B. 12)
E mto)L L

14



By performing the differential of the frequency (II.B.4), we find

8L = mL
L koLo

Finally, substituting this into (IIB. 12) and simplifying gives

BE 8wo
E co

which is equivalent to the general result (ll.B.2).

For any harmonic oscillator, the action J = E/o) is constant if a parameter of

the system is altered infinitely slowly. The action is thus an adiabatic invariant. What

happens if the alteration is slow but occurs over a finite time? Landau and Lifshitz (1976)

have shown that, if a parameter is varied slowly and infinitely smoothly from one

asymptotically constant value to another, the adiabatic invariant J changes as

AJ f exp(-WfO)

where 2n/!7 is a characteristic time of the alteration, and o is the characteristic frequency

of the motion. Changes in the adiabatic invariant are thus exponentially suppressed. In

particular, as f) -+ 0, anJ/,Mn -+ 0 for all values of n; that is, the function J(O) is

infinitely flat at the origin. For alterations that are slow but not infinitely smooth,

(Q"T

where m is the order of the lowest discontinuous derivative (Lenard, 1959). It is our

desire that the discontinuity in the models, which occurs at I t I - T, has a negligible

15



effect on the motion if the discontinuity is small. We should therefore observe the

exponential suppression, although in Ch. III we will see that this is not the case.

In the Rotate and Translate systems, the initial and final values of the alteration

parameters are identical. Hence, the change AJ in the adiabatic invariant is proportional to

the change AE in energy. In our numerical results for Dilate and Translate, we deal with

the change AA in amplitude rather than AE. It is easily shown, however, that AA should

also be exponentially suppressed. For the Dilate system, the final frequency differs from

the initial frequency, and we accordingly deal with AJ = A(E/co).

16



m

Sk k
0

L = unstretched length
of each spring

Fig. II.B. 1. Geometry of the Dilate system. The amplitude of the motion is assumed to
be small(Ixx << L).
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C. ABRUPT LIMITS

In this section, we analytically solve for the final state of motion of the systems in

the limit of an abrupt alterations. In Ch. III, we compare these predictions to numerical

results.

We first consider the Rotate system. The equation of motion (H.A. I and II.A.6)

can be expressed as

dv s [h' 0 .2 t 2 (H .C .I)

dt 10 (T .1 ([C.1

where v is the velocity dx/dt. In the abrupt limit (!o >> too), the position is approximately

X~)=Asn(~~) 01 (ll.C.2)IA, sin(mo)t+ý,), t > 0'1

where Ak is the initial amplitude and 4o is the initial phase. We wish to determine the final

amplitude A, and final phase 01. Continuity of position at t = 0 implies

A. sin~o - A, sink ,. (II.C.3)

The velocity at t = 0, however, is discontinuous in the abrupt limit. To determine the jump

Av in velocity, we integrate (II. C. 1) over a small time interval about t = 0. This gives,

approximately,

Av = 2oX(0) Jsec h2z(- 9 )dt = 4 0ox(0), (II.C.4)

18



which is asymptotically accurate as IO- oo. Combining (II.C.4) and (II.C.2), we find

that the velocity jump condition is

oo(A1 cos, 1 -A 0 cos4o) = 4 0 oAo sinýo. (II.C.5)

Because CIO >> 0oo, we can neglect the second term in (II.C.5) if sinýo •0. If sin~o = 0,

then the right side of (II.C. 5) vanishes. Hence, we can approximate (II.C. 5) as:

co0. cos4, = 41 0 Aosinýo, ifsin#O •0

A, cosC1 = A., if sin~o =0. (IIC6)

The relationships (II.C.3) and (II.C.6) constitute two equations in the two unknowns A,

and . The solution for sin 0o * 0 is

(0)
"*1 = tan-i( oo J. (II.C.7)

The solution for sin4o = 0 is

A , = A ., (II.C.8)

sin C = 0.

The results (II.C.7) and (II.C.8) are valid in the abrupt limit (0o >> o). They are

compared to the numerical simulations in Sec. II.B.

In the case of the Translate system, the position in the abrupt limit is also given by

(II.C.2). To determine the final amplitude A, and final phase 01, it is convenient to

consider the motion in the laboratory frame of reference. We suppose that the tube

abruptly suffers a longitudinal displacement D at t = 0. In the laboratory frame, the force

19



on the mass is due solely to the springs, and this force remains finite over the vanishingly

small time interval of the alteration. The velocity must therefore be continuous. The

pe ition relative to the tube, however, is discontinuous by the amount -D, because the

mass does not move during the alteration. The position and velocity relationships at t = 0

thus yield, respectively,

A, sin (p1 = A 0 sinp 0o - D,

A, cos(P =A. cospo.

By adding the squares of each of these relationships to each other, we determine the final

amplitude A,. By dividing the relationships, we determine the final phase 41. The results

are

AI =[A.'-2AoDsino + D2]2,I
tan_•Aosin_•0o-D'•.(II.C.9)

(P I = tan- A.C~~ si p )
( Ocos~p. ).

In Sec. III.C, we will compare these theoretical results to the numerical simulations.

In the case of an abrupt alteration in Dilate (Fig. II.C. 1), the position of the mass

is given by

X { Aosin((ot+ý.), t<0(,

x')=A sin(ODt+ý), t>0 j

where the final frequency is now different than the initial frequency, in contrast to (II.C.2).

The unknowns are the final amplitude A, and final phase 01. To solve for these, we first

note that the position must be continuous, which implies that, at t = 0,

20



Ao sin 4)0 A1 sin 4b. (II.C. 11)

Second, the force f on the mass is proportional to -o,2(t)x, and w(t) is always finite by

(II.A. 10). Hence, the impulse (ffdt) over a vanishingly small interval about t = 0 must

vanish. This implies that the momentum and, hence, velocity mast be continuous. From

(II.C. 10), the continuity of velocity at t = 0 implies

(0 A cosoO• = co A cos4)•. (II.C. 12)

The relationships (II.C. 11) and (II.C. 12) constitute two equations for the two unknowns

A, and 4)I. Solving for these quantities gives

2

A,-=A. 2+ I-isin2o (II.C. 13)

1 = tan--' (. tangoJ. (II.C.14)

The change in adiabatic invariant is

A2

AM C01 O .0 2 0'

Substituting (II.C. 13), and simplifying, gives

0) 2 LC1, 0o c,2

21



This expression gives the predicted change in adiabatic invariant in the abrupt limit of the

Dilate system. In Sec. III.D, we compare the predicted change in adiabatic invariant to

numerical data.

In summary, the effects of abrupt alterations in the three models are characterized

as follows. In Rotate, the position is continuous while the velocity is discontinuous. The

reverse occurs in Translate, where the position is discontinuous and the velocity is

continuous. Finally, in Dilate both the position and velocity are continuous.

22



III. NUMERICAL SIMULATIONS

A. IMPLEMENTATION

The numerical simulation programs were implemented using the Euler-Cromer

method (Gould and Tobochnik, 1988) of approximating ordinary differential equations, as

we now explain. It should be noted that Runge-Kutta methods are unstable for periodic

autonomous motion in a Hamiltonian system.

For motion with one degree of freedom, we assume that the acceleration a is a

known function of the position x, velocity v, and time t. Hence,

dv-= a(x,v,t),
dt
dx

= - V.

dt

The velocity vn+1 and position xn1 at time tn~j, where tn+l = tn + At, can then be

approximated as

gn +_ = v , + a.At, (IIA . 1)

xn÷I = xn + v,÷ At,

where an = a(xn, vn, tn). The standard Euler method employs the old velocity vn in the

second equation, and is unstable. The use of the updated velocity vn+1 causes the method

to be stable.

The final states of the systems depend upon the initial phase. We define phase as

tan1l(x/v), where x is the position and v is the velocity. The initial phase (when the

alteration of the system is initiated and is very small) is constructed to be identical to the

23



phase at the zero of time for the case of no alteration. The zero of time corresponds to

the maximum alteration in the case of Rotate and Translate, and to the maximum rate of

change of the alteration in the case of Dilate. In the first two cases, the system parameters

are returned to their initial values. Hence, relative to the initial state of motion, the final

state can be characterized not only by the change in amplitude, but also by the change in

final phase. This quantity equals the final phase (when the alteration of the system is

concluded and is very small) minus the value of the phase at this time in the case of no

alteration. By construction, the latter is identical to the initial phase.

Ideally, we would like for the alteration of a system to be identically zero outside a

time interval (-T,T), and nonzero and infinitely smooth inside the interval. Unfortunately,

such an analytic function does not exist. This is demonstrated by a Taylor expansion at

I t I = T which shows that the function must be constant everywhere. Our approach, as

stated in Sec. ILA, is to choose an infinitely smooth function which is exponentially

localized in time, and to choose the value of T sufficiently large such that the difference

between the function and a constant is sufficiently small. The constant in Rotate and

Translate is zero while the difference in Dilate is nonzero. This small difference is labeled

e, which is specified by the program user. The total time T is then calculated with

asymptotic expressions of the alteration functions for large times (because T is large). For

Rotate, we find from (II.A.6)

T = 2f2--- (III.A.2)
•o 6

Next, this value is increased by the smallest amount such that the new value corresponds

to an integral number of cycles when no alteration occurs. This has the advantage of

giving a physical meaning to the initial phase (at t = -T): The initial phase is identical to
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the phase at t = 0 and t = T when no alteration of the system occurs. This is important

since we wish to examine how the state of motion changes for different values of f!o while

the initial phase remains fixed. A method such as ours is the only meaningfiul way of

defining initial phase for different values of fo. If [flma represents the maximum integer

contained in the quantity f, the time window (-T,T) for the Rotate system model is then

given by

T = 27c{[I ( 2 loge ,-2-] + 1}. (III.A.3)

In this expression, we have assumed that the period of the motion of the unaltered system

equals 2n (i.e., coo = 1). The number of cycles corresponding to the preliminary value

(III.A. 1) is then the preliminary value divided by 2n.

For Translate, we differentiate (II.A.8) (since V'(t) occurs in the equation of

motion). We then employ asymptotic expansions of the hyperbolic function, and solve for

T as a function of e as in Rotate above. This procedure yields the preliminary result

I 2V'
T= log. 2V° (IH.A.4)V,, 7EF,

This expression is then adjusted to correspond to a integral number of cycles of the

unaltered system, yielding

T = 21{[ (i log, + I} (IA. 5)

For Dilate, we follow the same procedure as in Rotate and Translate. From

(11.A. 10), the preliminary expression is
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T -log (l.A.6)
2a e F

where for clarity we have restored the use of oo (rather than setting it equal to unity). The

adjusted value for T is then

T= {[ O0( I-log, + I . (III.A.7)

The time step At in (III.A. 1) must be small compared to both the typical period of

the motion and the characteristic time over which the alteration occurs. This is important

because we desire to obtain data over the complete range of alteration times, from very

slow to very fast compared to the period of the motion. The program user effectively

enters the value of At by specifying the "number of steps per cycle." By "cycle" is meant

the period of the unaltered motion or the time of alteration, whichever is smaller. The

programs compute this.
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B. RESULTS OF ROTATION MODEL

The rotational system simulations consist of three regimes: (a) the abrupt regime,

in which the peak angular velocity Q~0 is substantially greater than unity (i. e., Q. is

substantially greater than the natural frequency (oo which we set to unity), (b) the

intermediate regime, in which f0 is of the order of unity, and (c) the near-adiabatic

regime, in which CIO is substantially less than unity. We examine each of these regimes in

turn.

Figs. II.B. 1 and III.B.2 show the results for the abrupt regime. The oscillator has

an initial amplitude of unity, and various values of the initial phase (Sec. IH.A).

Remarkable behavior characterizes the abrupt regime. For any initial phase between

approximately 00 and 600, the final state of the oscillator is the rest state (the change of

amplitude equals -1) for a particular value of the peak rotational angular velocity 00. The

final phase suffers an abrupt, although continuous, transition by 180°. To understand this

behavior, it is convenient to consider a fixed value offl, and continuous values of the

initial phase. Fig. III.B.3 shows such a case. Fig. III.B.4 shows the corresponding time

series (displacement vs. time) for three initial phase values near the transition. Note that

the phases are such that the centrifugal force decreases the energy of the oscillator. The

centrifugal force in this abrupt case alters the upright potential energy curve such that the

curve is momentarily inverted (during a small time interval about t = 0). With this picture,

we can readily understand the behavior. For one value of the initial phase (near 40.38' in

Fig. III.B.4), the work done by the centrifugal force equals the initial energy, and so the

oscillator is at rest in the final state. For initial phases slightly less than this, the mass does

not pass through the spatial origin when t w 0 due to the greater effect of the centrifugal
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force. For initial phases slightly greater, the mass passes through the origin due to the

lesser effect of the centrifugal force. This accounts for the 1800 difference in final phase.

The theory for the final amplitude and phase of the Rotate system in the abrupt

limit is developed in Sec. II.C. According to (II.C.6), for sin~o # 0 the change in

amplitude should be asymptotically proportional to the peak rotational angular velocity 00o

with a proportionality constant that is independent of the initial phase 4o. Figs. III.B. l a

and III.B.2a indeed show an approximately linear relationship in the abrupt regime, but the

slope depends substantially upon the initial phase. It may be that the curves approach a

common slope for extremely large values of !no, but the theory is too crude for moderately

large values of CIO. Regarding the final phase, (II.C.7) predicts that this should approach

zero in the abrupt limit, so the change in final phase should approach the negative of the

initial phase. Figs. III.B. lb and III.B.2b show that this is indeed the case.

Figs. III.B.5 and III.B.6 show the results for the intermediate regime. The change

in amplitude appears to approach zero in qualitative accord with the theory (Sec. IIB);

that is, the curve becomes very flat (or exponentially suppressed). Furthermore, for

smaller values of the peak rotational angular velocity !no, the results appear to become

independent of the value of the initial phase. This is in accord with the theory.

However, Figs. III.B.7 and III.B.8 show the remarkable result that the change in

amplitude is not exponentially suppressed in the near-adiabatic regime. Rather, the change

in amplitude is roughly linear in the alteration parameter flo. Moreover, the dependence

of the change in amplitude upon initial phase persists down to the adiabatic limit, although

the change in final phase does become independent of the initial phase.

Suspicion of the numerical results for very slow changes of the system is natural.

Indeed, j.U numerical method will eventually become inaccurate for sufficiently slow

changes as a result of the large number of simulated cycles and the smallness of the change
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in motion of the system. For this reason, the near-adiabatic results should be subjected to

further scrutiny, including verification of independence of the "glitch" amount E and the

time step At.
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Fig. III.B.2 Numerical simulation results for the Rotate model for peak rotational angular
velocities 00~ in the AknM regime. The various values of the initial phase are shown each
curve.. The numerical parameters are the same as in Fig. mHB. 1.
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Fig. III.B.3. Numerical simulation of Rotate model limit for a fixed peak angular velocity

.0o = 3. The values of e and the number of steps per cycle are the same as in Fig III.B. 1.
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the transition. The peak angular velocity is Qo = 3. The values of e and the number of

steps per cycle are the same as in Fig. II.B. 1.
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Fig. III.B.5 Numerical simulation results for the Rotate model for peak rotational angular

velocities CO in the intermediate regime. The various values of the initial phase are shown

with each curve.. The numerical parameters are the same as in Fig. III.B. 1.
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Fig. III.B.6 Numerical simulation results for the Rotate model for peak rotational angular

velocities Co in the intermediate regime. The various values of the initial phase are shown

with each curve.. The numerical parameters are the same as in Fig. IlI.B. 1.
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are shown with each curve. The numerical parameters are the same as in Fig. IH.B, 1.
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C. RESULTS OF TRANSLATION MODEL

As in the case of Rotate, the Translate model yielded three regimes with respect of

the rate of alteration: abrupt, intermediate, and near-adiabatic. We consider each of these

in turn.

Figs. IIH.C. 1 and EII.C.2 show changes in amplitude and final phase for values

of the peak translational velocity Vo that include the abrupt limit. A comparison of the

numerical results for the changes in amplitude yield excellent agreement with the

theoretical predictions (II.C.9) for A. = I and D = 1. For an initial phase of 900, note that

the final amplitude is zero. This is easily explained if we consider the motion in the

laboratory frame of reference. At t = 0, when the mass is at its unit amplitude turning

point in the positive direction, the tube is abruptly translated one unit in the positive

direction. The mass is then at the equilibrium point with zero velocity, and will thus

remain at rest.

An interesting feature of the changes in amplitude in Figs. III.C. Ia and III.C.2a is

how rapidly the abrupt-limit values are reached as the peak translational velocity Vo is

increased. Even though the characteristic speed of the mass is unity, V0 need only be

roughly equal to 5 to 10 in order for the alteration to be accurately considered as abrupt.

Regarding the abrupt limit of the change in final phase, Fig. II.C. lb shows 3600

jumps at various values of the peak translational velocity. These appear to be numerical

artifacts of the phase computation, although the problem has not yet been identified.

Nearly all of the numerical values in the abrupt limit agree with the theoretical predictions

(II.C.9) to within a difference of 3600. In Fig. III.C.2b, nearly all of the numerical values

agree with the theoretical values if 1800 is added to the latter. Such a deviation is

common when the inverse tangent function is employed since it is multivalued by that
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increment. Regardless of the ambiguity of 180', however, the 0* and 901 initial phase

data do not agree with the theoretical predictions. Further work is required here.

Figs. III.C.3 and III.C.4 show the intermediate regime. The suppression of the

changes in amplitude is dramatic. Furthermore, the changes in final phase are also

dramatically suppressed, in contrast to the Rotate system.

Figs. III.C.5 and IIl.C.6 show the near-adiabatic regime. The variations in the

change in amplitude indicate significant numerical error. Moreover, the fact that the

change in final phase appears to diverge in the adiabatic limit, rather than approach zero as

it should, strongly suggests numerical error. The improvement of the computer program

here is a subject of future work (Ch. IV).
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Fig. III C. I Numerical simulation results for the Translate model in the abru-pt regime.

Values of the initial phase are displayed near each curve. The numerical parameters are e

= 10-6 and number of steps per cycle = 5000.
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Fig. III. C.2. Numerical simulation results for the Translate model in the abrup regime.
Values of the initial phase are displayed near each curve. The numerical parameters are
the same as in Fig. III. C. 1.
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Fig. III.C.3. Numerical simulation results for the Translate model in the intermdiate

regime. Values of the initial phase are displayed near each curve. The numerical
parameters are the same as in Fig. II.C. 1.
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Fig. III.C.4. Numerical simulation results for the Translate model in the intermediate

regime. Values of the initial phase are displayed near each curve. The numerical
parameters are the same as in Fig. III.C. 1.
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Fig. III.C.5 Numerical simulation results for the Translate model in the nar-adiabatic
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parameters are the same as in Fig. III.C. 1.
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Fig. III.C.6 Numerical simulation results for the Translate model in the near-adiabatic

regime. Values of the initial phase are displayed near each curve. The numerical

parameters are the same as in Fig. III. C. 1.
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D. RESULTS OF DILATION MODEL

As in the cases of Rotate and Translate, the Dilate model yielded three regimes

with regard to the rate of alt-ration: abrupt, intermediate, and near-adiabatic. Because

the initial and final frequencies are not equal in the case of Dilate, we consider the change

in adiabatic invariant, rather than the change in amplitude as in Rotate and Translate.

Furthermore, the inequality of the initial and final frequencies implies that a comparison of

the final phase to the unaltered case is not meaningful.

Figs. Ill.D. 1 and III.D.2 show the change A(E/O) in adiabatic invariant as a

function of the rate-of-alteration parameter a on a scale that includes abrupt alterations,

(ox>>1). That the adiabatic invariant is E/6) is shown very dramatically: All of the curves

rapidly approach the origin as a is decreased through the "transition" region from a ; 5

to a - 1. For increasing values of a, the change in the adiabatic invariant rapidly

approaches a constant that depends upon the initial phase. Comparison of the asymptotic

values of A(Eko) for a >> 1 in the figures yields excellent agreement with those predicted

by the theoretical expression (1.C. 15) for A. = 1, (oo = 1, and oI = 2.

Figs. IU.D.3 and mI.D.4 show the results in the intermediate regime. The

suppression of the change in adiabatic invariant is very dramatic. It is interesting that,

whereas the abrupt limit is insensitive to the initial phase transformation gpo -- 1800 -+ ý.,

as expected on physical grounds, the intermediate/near-adiabatic regime is approximately

insensitive to the simultaneous transformation po -+ ýo + 900 and A(E/ho) -+ -A(E/o0). The

significance of this is not yet known.

The transformation becomes exact in the near-adiabatic regime, as shown in Figs.

III.D.5 and III.D.6. More importantly, however, the change in the adiabatic invariant does

not approach zero in the adiabatic limit, but approaches a constant that depends upon the
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initial phase. This in qualitative accord with Lenard's result (Sec. II.B) for nonsmooth

alteration functions, due to the e "glitch" in our function. By performing computer runs in

which the alteration was zeroed out but all other computations were the same, we have

verified that the behavior is not a result of the accumulation of error over the many cycles.

As a next step, we should decrease e to observe if the values of A(E/co) decrease.
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Fig. III.D. I Numerical simulation results for the Dilate model in the abrupt regime.

Values of the initial phase are displayed near each curve. The numerical parameters are

s = 10-6 and number of steps per cycle = 10,000.
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Fig. III.D.2 Numerical simulation results for the Dilate model in the abrupt regime.

Values of the initial phase are displayed near each curve. The numerical parameters are

the same as in Fig. III.D. 1.
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Fig. III.D.4 Numerical simulation results for the Dilate model in the intermediate regime.

Values of the initial phase are displayed near each curve. The numerical parameters are

the same as in Fig. III D. 1.
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Fig. hID. 5 Numerical simulation results for the Dilate model in the nmi-adiabatic

regime. Values of the initial phase are displayed near each curve. The numerical

parameters are the same as in Fig. III.D. 1.
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Fig. III.D.6 Numerical simulation results for the Dilate model in the near-adiabatic

regime. Values of the initial phase are displayed near each curve. The numerical

parameters are the same as in Fig. III.D. 1.
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V. CONCLUSIONS AND FUTURE WORK

We have numerically investigated the change in motion of oscillators subjected to

different types of alterations. The rates of alteration were varied over the complete range,

from very slow (near-adiabatic regime) to very fast (abrupt regime) compared to the

typical period of oscillation. One of the systems (Rotate) exhibits interesting behavior in

the abrupt regime: The final state can be the rest state for a certain relationship between

the values of the rate-of-change parameter and the initial phase. The theory of this system

in the abrupt limit fails to describe both this behavior and the asymptotic relationship

between the change in amplitude and the rate-of-alteration parameter. The reason for this

failure is apparently the singular nature of the alteration; i.e., that the centrifugal force

diverges in the limit of an abrupt 3600 rotation of the system. Such a singularity is not

present in the other two systems (Translate and Dilate), which behave in the abrupt limit

according to the theory, although further investigations are needed (see below).

All three systems show a dramatic suppression of the change in motion as the rate-

of-alteration is decreased to values less than roughly the frequency of the motion. This

bears out the practical use of adiabatic invariance in situations where the rate of alteration

is slow but not very slow, for example, in geometrical ray theory or the bending of

microwaves in waveguides. Moreover, our results show that the suppression is

sufficiently strong that the rate of alteration need not be slow for the adiabatic invariant to

be approximately conserved, and suggest that this may be a general result.

In the near-adiabatic regime, we do not observe the predicted exponentially

suppressed breakdown of adiabatic invariance. In the case of Rotate, the change in

amplitude is linear in the rate-of-alteration parameter. The dependence cannot be
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identified in Translate, as a result of numerical error. In Dilate, the change in adiabatic

invariant is discontinuous in the adiabatic limit, which may be in accord with the fact that

the alteration function is discontinuous, although this discontinuity is very small (by the

amount e at Itl = T, where T is much greater than the period of the motion). In all cases,

we observe a remarkable fact not predicted by the theory: The dependence of the change

in adiabatic upon the initial phase persists down to the adiabatic limit. This is surprising; it

was expected that the sensitivity to initial phase would be lost for very slow alterations as

a result of the many cycles of the motion that occur during the alteration. That is, it was

expected that the dependence upon initial phase would be "washed out."

There is a substantial amount of future work that can be done as an extension of

this thesis. Regarding the near-adiabatic limit, there are the following possibilities: (a)

improved numerical accuracy, (b) use of an infinitely smooth alteration function, (c)

generalization of the theory to include dependence upon initial phase, (d) integration of the

equations of motion, and (e) theoretical determination of the change in final phase. In (a),

an initial step could be to reduce the time step in the existing computer programs, allowing

them to run for several days. If the results change significantly, then the next step could

be to employ a more sophisticated numerical technique in order to increase the accuracy.

An interesting aspect here is that the observation of exponential suppression may test the

current limits of computational power, similar to simulations probing the famous problem

of whether or not the Solar System is stable. In (b), it is possible to construct infinitely

smooth functions that vanish outside an interval, although the functions are nonanalytic.

Such functions may remove our e "glitch" problem, or at least move the problem to a

more fundamental level. In (c), our results show that the dependence upon initial phase

remains in the limit of adiabatic alterations. An important contribution would be to

include this in the theory of the weak breakdown of adiabatic invariance, although this
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may be a difficult task. In (d), C. Frenzen has pointed out that some of our equations of

motion may be integrable. This is especially true for the Translate system, whose driving

term is independent of the response. In (e), it should not be difficult to theoretically

predict the change in final phase for the Rotate and Translate systems, and to then

compare these predictions to the numerical simulations. This may lead to an

understanding of the fact that the initial phase dependence persists in Rotate, but is lost in

Translate.

Regarding the abrupt regime, there are the following possibilities for future work:

(a) improvement of the theory for Rotate, (b) numerical simulations of Rotate in the highly

abrupt regime, and comparison to theory, and (c) examination of possible 1800 increments

of ambiguity in the final phase in the Translate numerical simulations. In (a), the current

approximate theory for Rotate is too crude at least in the moderately abrupt regime. More

care should be paid to the singularity (i.e., infinite centrifugal force in the abrupt limit). In

(b), it may be that the current Rotate theory is accurate for extremely abrupt alterations.

This should be checked with numerical simulations. In (c), as noted in Sec. III.D, there

appear to be ambiguities in the numerical determination of the final phase in Translate.

This should be checked and corrected if necessary, and the results should then be

compared to the abrupt theory.
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APPENDIX A ROTATE.C

This program determines the final state of a one-dimensional oscillator that is rotated by
360 degrees about a perpendicular bisector of the system. The equation of motion for the
position of the oscillator is

d'x =_I-ft]
dt'

where the rotational angular velocity is given by

omega(t < -T) = 0,
omega(-T <= t <= T) = omegao*sech(omegao*t/2),

omega(t > T) = 0.

Without loss of generality, the natural (undriven) angular frequency is chosen to be unity.
Also without loss of generality, the initial amplitude is chosen to be unity. For
convenience, the initial phase (at t=-T) is constructed to be equal to the phase at t=0 and
t=T when there is no rotation (omega--0 for all t). This is ensured by having T/(2*pi) = an
integer. The program computes final states for a sequence of values of the peak rotational
angular velocity omega0.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.14159265358979323846

double omeg0min, omegOmax, omegOdel;
double omega0, T;
double delta, phaseO, epsilon;

long int ncycles, ntotal;
long int nsteps;
int type;

void input(void), timestep(void), window(void);
long int maxint(double value);
double omegasq(double t);
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char fiiame[ 15];

void main(void)

double x, xold, v, a, t;
double energy, amp, phasel, phase, phasef, angle,

long int n, nzero;
long int m, mtop;

FILE *fptr, *fopenO;

inputo;

fptr =fopen(fhiame, "w");

fprintf(fptr, I' oe"Wn%%f~" me~i)

fprintf(fptr, " omegOmaxn = %lfn", omegOmax);
fprintt(fptr, " omegOdel = %li~n", omegOdel);

fprintf(fptr, " epsilon =%le\n", epsilon);
4~rintt(fnr, " nsteps =%li\n", nsteps);
fprintf(fptr, " phaseO = %lffn", phaseO);
if (type == 1)
fprintt(fjptr, " rotation =yes\n");
if (type == 0)

fprintf(fptr,"W rtaio

fprintf(fptr, "The data columns are values of:\n\n");
fIprintf(fptr, " 1) peak rotational angular velocity\n");
fprintf(tftr, " 2) change in amplitude\n");
fjprintf(fptr, " 3) change in final phase (deg)\n\n");

printf("\nn");
printf("The data columns are values of:\n~n");
printf("\tl1) data point number\xV');
printf("\t2) peak rotational angular velocity\n");
printt("\t3) change in amplitude\n");
printf("\t4) change in final phase (deg)\n\n'");

phaseO =(pi/180.0)*phaseO;

mtop = I + maxint(0.9999*(omegOmax - omegOn-dn)/omegOdel);

for (m0O; m<=mtop; m-$+)
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omegaO = omegOmin + m*omegOdel;

windowo;

timestepo;

x = sin(phaseO);
v = cos(phaseO);

nzero = 0;

for (n0-; n<=ntotal; n++)

t =-T + n*delta;

a (type*omegasq(t) - 1 .0)*x;
v =v + a*delta;

xold =x
x =x + v*delta;
if (x*xold < 0.0) nzero++;

energy = 0.5 *(x*x + v)
amp = sqrt(2.0*energy);

phase I = 0.5*pi - atan(v/x);
phase = nzero*pi + phasel;
phasef = phaseO + 2.0*ncycles*2.0*pi;
angle = (180.0/pi)*(phase - phasef);

printf('%li of %li\t\t%lt\t%Ie\t%lf\n", m+I1, mtop+ 1, omega0, amp-l10,
angle);

fprintt(fptr," %f %We %lf~n", omegaO, amp-i .0, angle);

printf("\nPROGRAM COMPLETED. The output data file is: %s\n\n", fliame);

exit(0);

/*********************end of main program
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void input(void)

{

char answer;

start:

again:
printf("\n~n");
printf("Enter omegOmin (the minimum peak value omega0fn");
printf("of the rotational angular velocity): ");
scanf("%lf', &omegOmin);
printf("\n");
if (omegOmin <= 0.0)
{

printf("\tThe minimum peak value omegOmin\n");
printf("\tmust be greater than zero.");
goto again;

printf("Enter omegOmax (the maximum peak value omegaOfn");
printf("of the rotational angular velocity): ");
scanf("%lf', &omegOmax);
printf("\n");

printf("Enter omegOdel (the increment of the values ofin");
printf("the peak rotational angular velocity omegao): ");
scanf("%lf", &omegOdel);
printf("\n");

printf("Enter epsilon (the value of the rotational\n");
printf("angular velocity at the endpoints): ");
scanf("%lg", &epsilon);
printf("\n");

printf("Enter nsteps [the number of time steps per~n");
printf("smaller cycle (natural response or drive)]: ');
scanf("%Ii", &nsteps);
printf("Wn");

printf("Enter phaseO (the initial phase in degrees): ");

scanf("%lf', &phaseO);
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printf('\n");

printf("Is the system to be rotated? [y (yes) for~n");
printf(" rotation or n (no) for no rotation]:
scanf("%s", &answer);
if (answer = ') type = 0;
else type = 1;

* printf("\n");

printf("Enter name of output data file: )

scanfW'%s", ftiaxe);
printf("\n");

printf("The following parameters and name have been chosen:\n\n");
printfW'\t\t omegOmin = %lf\n11, omegOmin);
printf("\t\t omegOmax = %lf~n', omegOmax);
printW'"\t\t omegOdel =%lf~n", omegOdel);
printfV'\t\t epsilon = %Ig\n", epsilon);
printf("\t\t nsteps = %li\n", nsteps);
printf('\t\tphaseO (deg) = %lfin', phaseO);
if (type 1)
printf("\t\t rotation = yes\n~n");
if (type = 0)
printf('\t\t rotation = no\n\n");
printf("\t\t output file = %s\n\n", fname);

question:
printf('Are these the desired values and name oftn");
printf( output data file? [y (yes) or n (no)]:
scanf("%s", &answer);
printf("\n");
if (answer !='y' && answer W ~) goto question;
if (answer =Wn) goto start;

return;

void window(void)

double prelim;
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prelim = (2.O/omegaO)*log(2.O0Iomega0/epsilon);
ncycles = maxint(prelitn/(2.0*pi));
ncycles++;

T =2.O*pi*ncycles;

return;

void timestep(void)

double prelim, maxvalue;

maxvalue 1. -0;
if (omegaO > 2.0) maxvalue =0.5*omegao;

prelim (2.0*pilmaxvalue)/nsteps;

ntotal =maxint(2.0*T/prelim);

delta = 2.0*T/ntotal;

return;

double omegasq(double t)

double omega;

omega =omegaO/cosh(0. 5*omegaO*t);

return omega*omega;
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long int maxint(double value)

* long int intvalue;

intvalue = (long int)value,

if (!((double)intvalue <= value) 11 !((double)(intvalue+ 1) > value))

printf("PROGRAM TERMINATED: Maximum integer function
(maxint)\n');

printf(" is not operating correctly. \n\n");
printf("input value =%lf~t\toutput value = %li\n\n", value, intvalue);
exit(O);

return intvalue;

/**********************end of program **************
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APPENDIX B TRANSLATE.C

This program determ'nes the final state of a one-dimensional oscillator that is translated a
distance of unity Mlong the axis of the system. The equation of motion for the position x
of the oscillator in the moving frame of reference is:

dx
2

-- + x = gforce(t)

where the effective gravitational force is

gforce(t < -T) = 0,
gforce(-T <= t <= T) = (omegaO /pi)sech(omegaO*t)tanh(omegao*t),

gforce(t > T) = 0.

The velocity of the system is (omegao/pi)sech(omegaO*t), and the effective ravitational
force is the negative of the time derivative of the velocity (i.e., the negative of the
acceleration).

Without loss of generality, the natural (undriven) angular frequency is chosen to be unity.
Also without loss of generality, the initial amplitude is chosen to be unity.

For convenience, the initial phase (at t=-T) is constructed to be equal to the phase at t=O
and t=T when there is no translation (gforce=O for all t). This is ensured by having
T/(2*pi) = integer.

The program computes final states for a sequence of values of the peak rate-of-change
parameter omegaO.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.14159265358979323846

double omegOmin, omegOmax, omegOdel;
double omega0, omega0sq, T;
double delta, phaseO, epsilon;

long int ncycles, ntotal;
long int nsteps;
int type;
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void input(void), timestep(void), window(void);
long int maxint(double value);
double gforce(double t);

* char fiiame[ 151];

* void main(void)

double x, xold, v, a, t;-
double energy, amp, phasel, phase, phasef, angle;

long int n, nzero;
long mnt m, mtop;

FILE *fptr, *fopeno;

inputo;

fptr = fopen(thiame, "w");

fprint~f(fptr, "\n");

fjrinttqfjtr, " omegOmin = %lffn", omegOmin);
fprintt(fptr, " omegOmax = %lf\n", omegOmax);
fprintt(fptr, " omegOdel = %lf\n", omegOdel);
fprintf(fptr, " epsilon = %le\n", epsilon);
fjprinttgfptr, " nsteps = %li\n", nsteps);
fprinttf(fptr,'" phaseO = %lf\n", phaseO);
if (type = 1)
fjprintf(fptr, " translation = yes\n");
if (type = 0)
fprintf(fptr, " translation = on)
fprintf(fptr, 'An");
fprintf(fptr, "The data columns are values of:\nn");
fprintf(fptr, " 1) peak rate-of-change parameter\n");
fprintf(fptr, " 2) change in amplitude\n");
fp~rintfqfptr, " 3) change in final phase (deg)\n\n");

printf('\n\n");
printf('The data columns are values of:\nn");
printf("\tl1) data point number~n");
printf("\t2) peak rate-of-change parameter\n");
printf("\t3) change in aniplitude\n");
printf("\t4) change in final phase (deg)\n\n");
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phascO = (piI1gO.O)*phaseO;

mtop = 1 + maxint(0.9999*(omegOmax - omegOnfin)/omegOdel);
for (m0O; m<=mtop; m++)

omegaO= omnegOmin + m*omegOdel;
omega0sq = omegaO*omegao;

windowo;

timestepo;

x = sin(phaseO);
v = cos(phaseO);

nzero, =0;

for (n0-; n<-ntotal; n++)

t =-T + n*delta;

a =-x + type*gforce(t);
v =v + a *delta;

xold = x
x =x + v*delta;
if (x*xold < 0.0) nzero++;

energy = 0.5 *(x*x + v)
amp = sqrt(2.0*energy);

phasel. = 0.5*pi - atan(v/x);
phase = nzero*pi + phase 1;
phasef = phaseO + 2.0*ncycles*2.0*pi;
angle = (1 80.0/pi)*(phase - phasef);

printf("%li of %li\t\t%lf\t%ie\tO/lf~n", m+ 1, mtop+ 1, omegaO, amp-I .0,
angle);

fprintfffp~tr," %f %We %lfn", omegaO, amp-lO0, angle);

printf("\nPROGRAM COMPLETED. The output data file is: %s\n\n", fliame);

exit(0);
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/*********************end of main program ***********I

void input(void)

char answer;

start:

again:
printf("\n"n);
printf('Enter omegOmnin (the minimum peak value\n");
printt('omegaO of the rate-of-change parameter):")
scanf("%lf', &omegOmin);
printf("\n");
if (omegOmin <= 0.0)

printf("\tThe minimum peak value omegOmin\n");
printt("\tmust be greater than zero.")
goto again;

printf("Enter omegOmax (the maximum peak value\n"~);
printf("omegaO of the rate-of-change parameter):")
scanf("%lf", &omegOmax);
printf("\n");

printf("Enter omegOdel (the increment of the values ofin");
printf("the peak rate-of-change parameter omegaO):")
scanf("%Wf', &omegOdel);
printf("\n");

printf("Enter epsilon (the value of the effective\n");
printf("gravitational force at the endpoints):")
scanf("%lg", &epsilon);
printf('\n');

printf("Enter nsteps [the number of time steps per\n");
printf("smaller cycle (natural response or drive)]:
scanf("%Ii", &nsteps);
printf("\n')
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printf("Enter phaseO (the initial phase in degrees):")
scanf("%lf", &phaseO);
printf("\n");

printf("Is the system to be translated? [y (yes) for~n");
printf("translation or n (no) for no translation]:
scanf('%s", &answer);
if (answer =='n') type = 0;
else type =1;
printf('n");

printf("Enter name of output data file:")
scanf("%s", 1'name);
printf('\n");

printf("The following parameters and name have been chosen:\n\n");
printf("\t\t omegOmin =%lf~n", omegOmidn);
printf("\t\t omegOmax = %If\n", omegOmax);
printf("\t\t omegOdel =%ltn", omegOdel);
printf("\t\t epsilon =%lg\n", epsilon);
printf('\t\t nsteps =%li\n", nsteps);
printf("\t\tphaseO (deg) =%lf\n", phaseO);
if (type ==1)
printf('"\t\t translation = yes\n\n");
if (type ==0)
printff("\t\t translation = no\n\n");
printf("\t\t output file = %s\ni\n", fhame);

question:
printf("Are these the desired values and name ot)
printf("output data file? [y (yes) or n (no)]:
scanf("%s', &answer);
printf("\n');
if (answer != 'y' && answer ! 'n) goto, question;
if (answer = 'n) goto start;

return;

void window(void)
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double prelim;

prelim = (1 .0/omegao)*log(2.0* omegaosq/(pi*epsilon));
ncycles = maxint(prelim/(2.0*pi));
ncycles++;

T = 2.0*pi*ncycles;

return;

void timestep(void)

double prelim, maxvalue;

maxvalue = 1.0;
if (omegaO > 1.0) maxvalue omega0;

prelim =(2.O*pilmaxvalue)/nsteps;

ntotal =maxint(2.O*T/prelirn);

delta = 2.O*T/ntotal;

return;

double gforce(double t)

double arg, value;

arg =omegao*t;

value = (omegaosq/pi)*tanh(arg)/cosh(arg);

return value;
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long int maxint(double value)

long int intvalue;

intvalue = (long int)value;

if (!((double)intvalue <= value) 11 !((double)(intvalue+l )> value))

printt("PROGRAM TERMINATED: Maximum integer function
(maxint)\n");

printf(" is not operating correctly.\n\n');
printt("input value =%lf~t\toutput value %li\n\n", value, intvalue);
exit(O);

return intvalue;

/**********************end of program

70



APPENDIX C DILATE.C

This program determines the final state of a one-dimensional oscillator whose
frequency is smoothly changed from an initial value to a final value. The equation of
motion for the position x of the oscillator is

d'x- +!n'(t)x =0
dt2

where the angular frequency is given by

omega(t<-T) = 1,

omega(-T<--t<=T) = [(omegaf+l) + (omegaf-1)*tanh(omegaO*t)]/2,

omega(t>T) = omegaf.

Without loss of generality, the initial angular frequency and amplitude are chosen to be
unity. The initial value of the adiabatic invariant (energy divided by frequency) is 1/2.

For convenience, the initial phase (at t=-T) is constructed to be equal to the phase at t=O
and t=T when there is no change (omega=1 for all t). This is ensured by having T/(2*pi)
integer.

The program computes final states for a sequence of values of the rate-of-change
parameter omegaO.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define pi 3.14159265358979323846
#define omegaf 2.0

double omegOmin, omegOmax, omegOdel;
double omegaO, T, omega;
doubie delta, phaseO, epsilon;

long int ncycles, ntotal;
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long int nsteps;
int type, typenot;

void input(void), timestep(void), window(void);
long int maxint(double value);
double omegasq(double t);

char ftiame[ 15]

void main(void)

double x, xold, v, a, t;
double energy, amp, adiabat;

long int n, nzero;
long int mf, mtop;

FILE *fptr, *fopenO;

inputo;

fptr =fopen(fhame, "w");

fprintf(fjflr, "Wn%).

fprintf(fptr, " omegOmin =%lf~n", omegOmin);
fprintf(fjptr, " omegOmax =%lf~n", omegOmax);
tfrintf(fptr, " omegOdel = %fn", omegOdel);
f~,iintf(fo~r, " epsilon = %le\n", epsilon);
fprintf(tftr, " nsteps = %li\n", nsteps);
tbrintf(fjptr, " phaseO =%lf\n", phaseO);
if (type~ I=)
fjprintf(fptr, " change = yes~n");
if (type ==0)
fprintf(fptr, " change= o")

fprintflfptr, "The data columns are values of:\n\n");
fprintf(fptr, " 1) rate-of-change parameter\n");
f1,rintf(fptr, " 2) change in adiabatic invariant\n");
fprintf(fptr, "\W%)

printf("\nn");
printf("The data columns are values of:\nMn");
printfW'\t 1) data point number~n");
printf("\t) rate-of-change parameter~n");
printf("\t3) change in adiabatic invariant\n");
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printf("\n");

phaseO = (pi/180.0)*phaseo;

mtop = I + maxint(0.9999*(omegomax - omegOmin)/omegOdel);
for (m=0; m<=mtop; m+4-)

omegaO= omegOmin + m*omegOdel;

windowo;

timestepo;

x = sin(phaseO);
v = cos(phaseO);

nzero =0;

for (n--0; n<=ntotal; n++)

t -T + n*delta;

a = (type*omegasq(t) + typenot)*x;
v =v + a*delta;

xold = x
x = x + v*delta;
if (x*xold < 0.0) nzero++;

if (type =0) omega = 1.0;
if (type 1 ) omega = omegaf,

energy =O.5*(v*v + omega*omega*x*x);
amp = sqrt(2.O*energy)/omega;
adiabat = energy/omega;

printf("%li of %Ii\t\t%If\t%Ie\n", m+ 1, mtop+ 1, omega0, adiabat-0. 5);
fprintf(fptr," %f %Ie\n", omega0, adiabat-0. 5);

printf("\nPROGRAM COMPLETED. The output data file is: %s\n\n", fname);

exit(0);
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/*********************end of main program

void input(void)

char answer;

start:

again:
printt("\n'n")
printf('Enter omegOmin (the minimum value of~n");
printt("the rate-of-change parameter omegaO): )

scanf("%IP', &omeg~min);
printf("\n")
if (omegOmidn <= 0.0)

printf("\tThe minimum rate-of-change value\n");
printf("\tomegOmfin must be greater than zero.");
goto again;

printf("Enter omegOmax (the maximum value oftn");
printf("the rate-of-change parameter omegaO): )

scanf("%lt", &omegOmax);
printf("\n");

printf("Enter omegOdel (the increment of the values\n");
printf("of the rate-of-change parameter omega0): )

scanf("%lf", &omegOdel);
printf("\n");

printf('Enter epsilon (the deviation of the angular frequency\n");
printf("from the constant values at the endpoints):")
scanf("%lg", &epsilon);
printf('\n");

printf("Enter nsteps [the number of time steps per fastest cycle\n");
printf("(during initial, final, or intermediate motion)]: )

scanf("%li', &nsteps);
printf("\n");
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printf("Enter phaseO (the initial phase in degrees):")
scanf("%lf", &phaseO);

prnf4n)

printf("Is the system to be changed? [y (yes) for\n");
printf("change or n (no) for no change]: I)

scanW(%s t , &answer);
if (answer == Wn) type = 0;
else type = I1;
typenot = 1 - type;
printf("\n");-

printf('Enter name of output data file: I)

scanf("%s", fhame);
printt("\n");

printf("The following parameters and name have been chosen:\n\n");
printf("\t\t omegOmin =%lk\n", omegOmin);
printf("\t\t omegOmax =%1f~n", omegOmax);
printf("\t\t omegOdel = %If\n", omegOdel);
printt("\t\t epsilon =%lg\n", epsilon);
printf("\t\t nsteps =%li\n", nsteps);
printf("\t\tphaseO (deg) = %lf\n", phaseO);
if (type = 1)
printf("\t\t change = yes\n\n");
if (type ==0)
printfi2'\t\t change = no\n\n'");
printf("\t\t output file = %s\n\n", fname);

question:
printf("Are these the desired values and name ot)
printfl"output data file? [y (yes) or n (no)I: )
scanf("%s", &answer);
printf("\n");
if (answer ! y' && answer != n') goto question;
if (answer == Wn) goto start;

return;
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void window(void)

double prelim;

prelim = (0. 5/omegaO)*log(fabs(omegaf~omegaf -1.0)/epsilon);

ncycles =maxint(prelim/(2.0*pi));
ncycles++;

T = 2.O*pi*ncycles;

return;

void timestep(void)

double prelim, maxvalue;

maxvalue = 1.0;
if (omegaf > 1.0) maxvalue = omegaf,
if (omegaO > omegaf) maxvalue = omega0;

prelim =(2.0*pi/maxvalue)/nsteps;

ntotal =maxint(2.0*T/prelim);

delta = 2.0*T/ntotal;

return;

double omegasq(double t)

double omega;
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omega = 0. 5*((omegaf+ 1.0) + (omegaf- I .0)*tanh(omegao*t));

return omega* omega;

long int maxint(double value)

long int intvalue;

intvalue = (long int)value;

if (!((double)intvalue <= value) I! ((double)(intvalue+ 1) > value))

printf("PROGRAM TERMINATED: Maximum integer function
(maxint)\n");

printf(" is not operating correctly.\n\n");
printf("input value %lf\t\toutput value = %li\n\n", value, intvalue);
exit(0);

return intvalue;

/**********************end of program ***********~**
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